实数的分类

方法一:分为有理数和无理数有理数又分为整数和分数,无理数又分为正无理数和负无理数。整数分为正整数、0和负整数,分数分为正分数和负分数。

方法二:分为正实数、0和负实数。正实数又分为正有理数和正无理数,负实数又分为负有理数和负无理数。

实数如何分类

实数可以分为有理数和无理数两类,或代数数和超越数两类。

实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

扩展资料:

实数拓扑性质:

1、令a为一实数。a的邻域是实数集中一个包括一段含有a的线段的子集。

2、R是可分空间。

3、Q在R中处处稠密。

4、R的开集是开区间的联集。

5、R的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。

6、每个R中的有界序列都有收敛子序列。

7、R是连通且单连通的。

8、R中的连通子集是线段、射线与R本身。由此性质可迅速导出中间值定理。

参考资料来源:百度百科——实数