一、如何用解线性方程组的方法求矩阵的逆
如果用解线性方程组的方法求矩阵的逆,可以这样做
分别求出Ax=λi的解(其中λi表示第i个分量为1,其余分量为0的单位列向量),得到解向量xi
然后把解向量x1,x2,...,xn拼接,得到的n阶矩阵就是逆矩阵
二、用逆矩阵怎么解线性方程组?
利用逆矩阵解线性方程组,设用矩阵表示的方程组为AX=B,其中:
A=[aᵢⱼ]ₙᵪₙ
X=[x₁ x₂ ∧ xₙ ]ᵀ
B=[b₁ b₂ ∧ bₙ]
若A可逆,则x=A⁻¹B
利用逆矩阵求解要求方程个数与未知数个数相等,且矩阵A可逆,否则此法失效。而GAUSS消元法对方程组个数与未知元个数不等时仍适用(此时有可能不相容或有无穷多个解)。且GAUSS消元法特别适合于计算机计算。
定义
线性方程也称为一次方程,因为在笛卡尔坐标系上任何一个一次方程的表示都是一条直线。组成一次方程的每个项必须是常数或者是一个常数和一个变量的乘积。且方程中必须包含一个变量,因为如果没有变量只有常数的式子是算数式而非方程式。
如果一个一次方程中只包含一个变量(x),那么该方程就是一元一次方程。如果包含两个变量(x和y),那么就是一个二元一次方程,以此类推。
三、如何利用逆矩阵解线性方程组
利用逆矩阵解线性方程组,设用矩阵表示的方程组为AX=B,其中:
A=[aᵢⱼ]ₙᵪₙ
X=[x₁ x₂ ∧ xₙ ]ᵀ
B=[b₁ b₂ ∧ bₙ]
若A可逆,则x=A⁻¹B
利用逆矩阵求解要求方程个数与未知数个数相等,且矩阵A可逆,否则此法失效。而GAUSS消元法对方程组个数与未知元个数不等时仍适用(此时有可能不相容或有无穷多个解)。且GAUSS消元法特别适合于计算机计算。
扩展资料:
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A⁻¹;n阶方阵A可逆的充分必要条件是r(A)=m;对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵;推论满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。
四、利用逆矩阵解线性方程组?
利用逆矩阵解线性方程组,设用矩阵表示的方程组为AX=B,其中:
A=[aᵢⱼ]ₙᵪₙ
X=[x₁ x₂ ∧ xₙ ]ᵀ
B=[b₁ b₂ ∧ bₙ]
若A可逆,则x=A⁻¹B
利用逆矩阵求解要求方程个数与未知数个数相等,且矩阵A可逆,否则此法失效。而GAUSS消元法对方程组个数与未知元个数不等时仍适用(此时有可能不相容或有无穷多个解)。且GAUSS消元法特别适合于计算机计算。
扩展资料:
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A⁻¹;n阶方阵A可逆的充分必要条件是r(A)=m;对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵;推论满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。