一、两个数互为质数是什么意思两个数互为质数的意思
1、互为质数的意思:两个数之间除了1之外没有更多的公约数比如2与9,3与8,等等,都是互素的,因为他们没有共同的因数,除了1。
2、但是4与6,8与12,9与21,等等,他们都不是互素,因为他们都有相同的因数。
二、什么是互为质数
互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。
互质数具有以下定理:
(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数。
(2)多个数的若干个最大公因数只有1的正整数,叫做互质数。
(3)两个不同的质数,为互质数。
(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质。
(5)任何相邻的两个数互质。
(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。
扩展资料:
一、表达运用
这里所说的“两个数”是指除0外的所有自然数。“公因数只有 1”,不能误说成“没有公因数。”三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。
两个整数(正整数)(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2。互质的两个数相乘,所得的数不一定是合数。
因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数。如1与17互质,1×17=17,17不是合数。
二、判断方法
1、分解判断法
如果两个数都是合数,可先将两个数分别分解质因数,再看两个数是否含有相同的质因数。如果没有,这两个数是互质数。如:130和231,先将它们分解质因数:130=2×5×13,231=3×7×11。分解后,发现它们没有相同的质因数,则130和231是互质数。
2、求差判断法
如果两个数相差不大,可先求出它们的差,再看差与其中较小数是否互质。如果互质,则原来两个数一定是互质数。如:194和201,先求出它们的差,201-194=7,因7和194互质,则194和201是互质数。
参考资料来源:百度百科-互质数
三、什么是质数什么是互质数
互质数:互质数为数学中的一种概念,即两个或多个公因数只有1的非零自然数。
质数:质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
四、什么是互质数?互质数是什么意思?
公因数只有1的两个非零自然数,叫做互质数。
1和任何数都成倍数关系,但和任何数都互质,因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。
能否正确、快速地判断两个数是不是互质数,对能否正确求出两个数的最大公约数和最小公倍数起着关键的作用。
扩展资料:
互质数的规律
一、两个不同的质数,为互质数。
二、1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质。
三、任何相邻的两个数互质。
四、任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。
1、这里所说的“两个数”是指除0外的所有自然数。
2、“公因数只有 1”,不能误说成“没有公因数。”
3、三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。 两个整数(正整数)(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2
4、互质的两个数相乘,所得的数不一定是合数。
5、因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数。如1与17互质,1×17=17,17不是合数。
参考资料来源:绍兴市少儿艺术学校官网-互质数
五、“互质数”是什么意思?
互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。
能否正确、快速地判断两个数是不是互质数,对能否正确求出两个数的最大公约数和最小公倍数起着关键的作用。
互质数具有以下定理:
(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数。
(2)多个数的若干个最大公因数只有1的正整数,叫做互质数。
(3)两个不同的质数,为互质数。
(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质。
(5)任何相邻的两个数互质。
(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。