一、逆矩阵怎么求?
逆矩阵的求法主要有以下几种:
其一是利用定义求逆矩阵
定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。下面举例说明这种方法的应用:
其二是初等变换法
求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得
(1)P1P2.......PsA=I,用A的负一次方右乘上式两端,的:
(2)P1P2.....PsI=A的负一次方。
比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。具体应用如下所示:
其三是伴随阵法
以上是求逆矩阵较为常用的三种方法,具体使用哪种方法,根据题目的要求而定。
二、矩阵的逆怎么计算?
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵
对B施行初等行变换,即对A与I进行完全相同的若百干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
如求
的逆矩阵A-1。
故A可逆并且,由右一半可得逆矩阵A-1=
扩展资料:
可逆矩阵的性质定理
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一回的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个答可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
三、矩阵的逆矩阵怎么求
一般情况下我们求逆矩阵
都是使用初等行变换的方法
即(A,E)通过初等行变换之后得到(E,B)
此时B就是A的逆矩阵A^-1
初等行变换的过程中可以有
交换两行,某行乘以非零常数,或者某行加上别的行乘以非零常数
四、求矩阵的逆有几种方法
一般有2种方法。
1、伴随copy矩阵法。a的逆矩阵=a的伴随矩阵/a的行列式。
2、初等变换法。a和单位矩阵同时进行初等行(或列)变换,当a变成单位矩阵的时候,单位矩阵就变成了a的逆矩阵。
第2种方法比较简单,而且变换过程还可以发现矩阵a是否可逆(即a的行列式是否等于0)。
伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。
五、逆矩阵怎么求?
在
A
的右侧接写一个单位矩阵,然后对三行六列矩阵施行初等行变换,
(1、交换任意两行;2、一行乘以任意实数;3、一行乘以任意实数加到另一行)
把前面
A
化为单位矩阵,后面的单位矩阵就化为了
A
的逆矩阵。
你试试,一定能自己完成。
![](/ad/adtupian.png)
![矩阵的逆怎么求(具体矩阵的逆怎么求)](/pic/%E7%9F%A9%E9%98%B5%E7%9A%84%E9%80%86%E6%80%8E%E4%B9%88%E6%B1%82%EF%BC%88%E5%85%B7%E4%BD%93%E7%9F%A9%E9%98%B5%E7%9A%84%E9.jpg)