一、sn通项公式

sn通项公式:an=a1+(n-1)d如果数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式(generalformulas)。有的数列的通项可以用两个或两个以上的式子来表示。没有通项公式的数列也是存在的,如所有质数组成的数列。

数列(sequenceofnumber),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

二、等差sn数列通项公式等差数列通项公式

1、通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。Sn=[n*(a1+an)]/2

Sn=d/2*n2+(a1-d/2)*n。

2、等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

三、sn公式是什么呢?

sn的前n项和公式是:Sn =a1(1-q^n)/(1-q)。

等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。等差数列{an}的通项公式为:an=a1+(n-1)d。

等差数列的公式:

公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。

项数=(末项-首项来)÷公差+1。

末项=首项+(项数-1)×公差。

前n项的和Sn=首项×n+项数(项数-1)公差/2。

第n项的值an=首项+(项数-1)×公差。

等差数源列中知项公式2an+1=an+an+2其中{an}是等差数列。

等差数列的和=(首项+末项)×项数÷2。

四、Sn通项公式

等差数列:

公差通常用字母d表示,前N项和用Sn表示

通项公式an

an=a1+(n-1)d

an=Sn-S(n-1) (n≥2)

an=kn+b(k,b为常数)

前n项和

Sn=n(a1+an)/2

等比数列:公比通常用字母q表示

通项公式

an=a1q^(n-1)

an=Sn-S(n-1) (n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为 Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)

当q=1时,等比数列的前n项和的公式为 Sn=na1

五、Sn的通项公式

Sn的通项公式是Sn=n(a1+an)/2,按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。

对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

六、sn公式是什么啊?

sn是求和公式:

1、等差数列:通项公式An=A1+(n-1)d。等差数列的前n项和Sn=[n(A1+An)]/2,Sn=nA1+[n(n-1)d]/2。等差数列求和公式:等差数列的和=(首数+尾数)*项数/2。

2、等比数列:通项公式an=a1×q^(n-1)。等比数列的前n项和Sn=n×a1(q=1),Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)。

Sn=f(an)型即Sn是关于an的函数:

这种类型的通项公式,主要有2个思路:保留Sn或者保留an,即Sn与an两个只能留一个。

基本方法:当n=1时,S1=f(a1),可求出a1;

思路1-保留Sn:当n≥2时,Sn=f(Sn-S(n-1));此时可求出Sn=f(n),再按照上面的方法求解即可。

思路2-保留an:当n≥2时,an=Sn-S(n-1)=f(an)-f(a(n-1)),解出这个方程后可得到an与a(n-1)两项的关系,再按照前面所讲的基本类型(累加法、累乘法、一阶线性等)的求解方法求解即可。