一、0的阶乘是多少
0的阶乘的结果是1,用正整数阶乘的定义是无法推广或推导出0!=1的即在连乘意义下无法解释“0!=1”。给“0!”下定义只是为了相关公式的表述及运算更方便。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
扩展资料
通常我们所说的阶乘是定义在自然数范围里的(大多科学计算器只能计算 0~69 的阶乘),小数科学计算器没有阶乘功能,如 0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma 函数定义为非整数的阶乘,因为当 x 是正整数 n 的时候,Gamma 函数的值是 n-1 的阶乘。
真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!
参考资料:百度百科词条——阶乘
二、0的阶乘是多少?
0的阶乘为1。
具体如下:
一个正整数的阶乘(英语:factorial)是所有小于及等于该数的正整数的积,并且有0的阶乘为1。简单一点是认为规定的,但它是有道理的,因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定.
因为1!=1,根据1!=1*0!,所以0!=1而不是0.
三、0的阶乘为什么等于1
0的阶乘为1。
具体如下:
一个正整数的阶乘是所有小于及等于该数的正整数的积,并且有0的阶乘为1。简单一点是认为规定的,但它是有道理的,因为阶乘是一个递推定义,n!=n*(n-1)!,那么必然有一个初值需要人为规定.
因为1!=1,根据1!=1*0!,所以0!=1而不是0.
扩展资料:
n!=1×2×3×...×n或者0!=1,n!=(n-1)!×n
例如,求1x2x3x4...xn的值,此时可以用阶乘的方式表示:
n!=1×2×3×...×(n-1)n或者n!=(n-1)!×n
由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。
给“0!”下定义只是为了相关公式的表述及运算更方便。
在离散数学的组合数定义中,对于正整数 满足条件 的任一非负整数 , 都是有意义的,特别地在 及 时,有 。
但是对于组合数公式 来说,在 及 时,都由于遇到0的阶乘没有定义而发生巨大尴尬。对照结论 和公式 ,我们顺势而为地定义“0!=1”就显得非常必要了。这样,组合数公式在 及 时也通行无阻,不会有任何尴尬了。
“为什么0!=1”这个问题是伪问题,而初学者总要追问这个伪问题。这就说明了我们在教材和教学实践中都没有把“有关‘0!=1’只是一种‘定义’的概念”讲清楚。
有教辅材料上把上述必要性及合理性视作为推导的过程,那当然是大错特错了。必要性及合理性只是有限几个例子,“0!=1”这种定义是不能用举若干例子的方法来证明的。
但是 这个定义使用至今可谓久经考验方便多多,没有出现过任何逻辑上不合理的现象。
参考资料:百度百科-阶乘