一、矩阵的逆矩阵公式

a的逆矩阵公式:A^-1=(A*)/|A|设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

二、矩阵的逆怎么计算?

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵

对B施行初等行变换,即对A与I进行完全相同的若百干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

如求

的逆矩阵A-1。

故A可逆并且,由右一半可得逆矩阵A-1=

扩展资料:

可逆矩阵的性质定理

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一回的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个答可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

三、逆矩阵怎么求?

逆矩阵的求法主要有以下几种:

其一是利用定义求逆矩阵。

定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。下面举例说明这种方法的应用:

其二是初等变换法

求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得

(1)P1P2.......PsA=I,用A的负一次方右乘上式两端,的:

(2)P1P2.....PsI=A的负一次方。

比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。具体应用如下所示:

其三是伴随阵法

以上是求逆矩阵较为常用的三种方法,具体使用哪种方法,根据题目的要求而定。

四、矩阵的逆怎么求

运用初等行变换法。具体如下:

将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=[A,I]对专B施行初等行变换,即对A与I进行属完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。

如求

的逆矩阵

故A可逆并且,由右一半可得逆矩阵A^-1=

扩展资料:

矩阵的应用:

在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。

采用近轴近似,假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面。

这矩阵称为光线传输矩阵,内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。

五、矩阵的逆矩阵怎么求

一般情况下我们求逆矩阵

都是使用初等行变换的方法

即(A,E)通过初等行变换之后得到(E,B)

此时B就是A的逆矩阵A^-1

初等行变换的过程中可以有

交换两行,某行乘以非零常数,或者某行加上别的行乘以非零常数

六、可逆矩阵的计算公式

计算公式:A^(-1)=(︱A︱)^(-1) A﹡(方阵A的行列式的倒数乘以A的伴随矩阵)。

这个公式在矩阵A的阶数很低的时候(比如不超过4阶)效率还是比较高的,但是对于阶数非常高的矩阵,通常我们通过对2n*n阶矩阵[A In]进行行初等变换,变换成矩阵[In B],于是B就是A的逆矩阵。

矩阵的乘法满足以下运算律:

结合律: 

左分配律: 

右分配律: 

矩阵乘法不满足交换律。

扩展资料:

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。

设  是数域,  ,若存在 ,使得  , 为单位阵,则称  为可逆阵,  为  逆矩阵,记为  。若方阵  的逆阵存在,则称  为可逆矩阵或非奇异矩阵。

判断或证明  可逆的常用方法:

①证明  ;

②找一个同阶矩阵  ,验证  ;

③证明  的行向量(或列向量)线性无关。

假设M是一个m×n阶矩阵,其中的元素全部属于域K,也就是实数域或复数域。如此则存在一个分解,其中U是m×m阶酉矩阵;Σ是m×n阶实数对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。

这样的分解就称作M的奇异值分解 。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是将奇异值由大而小排列。如此Σ便能由M唯一确定了。