一、圆周长公式的推导过程
圆周长公式的推导过程:在圆中内接一个正n边形,边长设为an,正边形的周长为n×an,当n不断增大的时候,正边形的周长不断接近圆的周长C的数学现象,即:n趋近于无穷,C=n×an
在经验中发现圆的周长与直径有着一个常数的比,并把这个常数叫做圆周率,于是自然地,圆周长就是:C=n×d或者C=1πr。后来的数学家们就想办法算出这个π的具体值,数学家刘徽用的是“割圆术”的方法,也就是用圆的内接正多边形和外切正多边形的周长逼近圆周长,求得圆接近192边型,求得圆周率大约是3.14。
二、圆的周长推导过程详细
1.将圆沿半径切割成若干等份(越多越好)(成若干扇形)
2.将扇形平均分成两份,相互对应起来拼成一个近似长方形的图形.(越多越接近长方形)
3.长方形的面积=长乘宽,这个拼成的长方形的长是圆周长(2Pr)的一半,所以,长是Pr(圆周率的符号我不会打,用P表示),宽是圆的半径r,因此得到圆的面积的计算公式为S=Pr.r=Pr2(平方)
圆周长推导
找几个圆形的物体,分别量出它们的周长和直径,并计算出周长和直径的比值.通过试验和统计,我们可以知道,圆的周长总是直径的三倍多一些.那么,任何圆的周长和直径的比值都是一个固定的数(圆周率).因为圆的周长总是直径的∏倍,当我们知道圆的直径或者半径时,就可以算出它的周长.即 c= ∏ d c=2 ∏ r.
圆面积的推导:
在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形.如果分的分数越多,每一份会越细.拼成的图形就会越接近长方形.长方形的长等于圆周长的一半,即 r , 宽等于圆的半径 r ,因为长方形的面积 = 长×宽,所以园的面积 =r × r = r² 即 s= ∏ r²
三、圆的周长公式是怎么推导出来的?
把圆片在直尺上向右滚一周测量长度,周长是直径的3倍多一些。
套公式。圆÷直径的数为圆周率,就是π。
公式:C(周长)=2πr(半径)=πd(直径)
假设小圆的直径为a、b
大圆的直径为(a+b)
两个小圆的周长之和为:π×a+π×b=π(a+b)
大圆周长=π(a+b)
扩展资料:
在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
四、圆的周长如何计算?
圆的周长公式:圆的周长C = π X 直径 = π X 半径 X 2 (π=3.14)
当圆的直径为50时S=3.14X 50= 157
通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆有无数条对称轴。圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。
扩展资料:
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
直线和圆位置关系:
1、直线和圆无公共点,称相离。 AB与圆O相离,d>r。
2、直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d 3、直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。(d为圆心到直线的距离) 参考资料来源:百度百科——圆 真正从理论上严密推导圆的周长必须依赖近代的分析数学,包括微积分的使用才行。 推导圆周长最简洁的办法是用积分。 在平面直角坐标下圆的方程是: 这可以写成参数方程: x = r * Cos t y = r * Sin t t∈[0, 2π] 于是圆周长就是 C = ∫√( (x'(t))^2 + (y'(t))^2 ) dt,t从0积到2π. 结果自然就是 C = 2π * r (注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数) 如果不需要更多的理论讨论,上面的做法就足够了。当然更确切地,人们或许还需要知道在数学上曲线的周长是如何定义的,以及圆的周长的存在性问题。这里就一时之间说不清了。 还可以这样理解: 对于半径为R的扇形,其圆心角为a,所对的弦长,由三角函数可得,2Rsin(a/2),内接多边形周长为2π/aX2Rsin(a/2),圆一周所对圆心角是2π,当然可以换个符号表示,不另讨论 相应的,外切多边形的算法类似,周长为2π/aX2Rtan(a/2) 当a接近于无穷小时,内接多边形周长为lim(a→0+)(2π/aX2Rsin(a/2)),外切多边形周长为 lim(a→0+)(2π/aX2Rtan(a/2)),对于极限lim(a→0+)(sina/a),lim(a→0+)(tana/a),a必须用弧度计算,如果a是角度,需要转化为弧度,这两个极限都是1 圆周长在这两个极限之间,大于内接圆周长,小于外切圆周长,而极限相等,由夹逼定理 2πRXlim(a→0+)(sin(a/2)/(a/2))=2πRXlim(a→0+)(tan(a/2)/(a/2))=2πR 所以圆周长等于2πR五、圆周长的推导过程是什么?